Ошибки выборкиСтраница 2
Ошибка выборки свойственна только выборочным наблюдениям. Чем больше значение этой ошибки, тем в большей степени выборочные показатели отличаются от соответствующих генеральных показателей.
Выборочная средняя и выборочная доля по своей сути являются случайными величинами, которые могут принимать различные значения в зависимости от того, какие единицы совокупности попали в выборку. Следовательно, ошибки выборки также являются случайными величинами и могут принимать различные значения. Поэтому определяют среднюю из возможных ошибок — среднюю ошибку выборки.
От чего зависит средняя ошибка выборки? При соблюдении принципа случайного отбора средняя ошибка выборки определяется прежде всего объемом выборки: чем больше численность при прочих равных условиях, тем меньше величина средней ошибки выборки. Охватывая выборочным обследованием все большее количество единиц генеральной совокупности, всё более точно характеризуем всю генеральную совокупность.
Средняя ошибка выборки также зависит от степени варьирования изучаемого признака. Степень варьирования, как известно, характеризуется дисперсией σ2 или w(1-w) — для альтернативного признака. Чем меньше вариация признака, а следовательно, и дисперсия, тем меньше средняя ошибка выборки, и наоборот. При нулевой дисперсии (признак не варьирует) средняя ошибка выборки равна нулю, т. е. любая единица генеральной совокупности будет совершенно точно характеризовать всю совокупность по этому признаку.
Зависимость средней ошибки выборки от ее объема и степени варьирования признака отражена в формулах, с помощью которых можно рассчитать среднюю ошибку выборки в условиях выборочного наблюдения, когда генеральные характеристики (х ,p) неизвестны, и следовательно, не представляется возможным нахождение реальной ошибки выборки непосредственно по формулам (форм. 1), (форм. 2).
Ø При случайном повторном отборе
средние ошибки
теоретически рассчитывают по следующим формулам:
• для средней количественного признака
; (форм. 3)
• для доли (альтернативного признака)
; (форм. 4)
Поскольку практически дисперсия признака в генеральной совокупности σ2 точно неизвестна, на практике пользуются значением дисперсии S2, рассчитанным для выборочной совокупности на основании закона больших чисел, согласно которому выборочная совокупность при достаточно большом объеме выборки достаточно точно воспроизводит характеристики генеральной совокупности.
Таким образом, расчетные формулы среднейошибки выборки
при случайном повторном отборе будут следующие:
• для средней количественного признака
; (форм. 5)
• для доли (альтернативного признака)
. (форм. 6)
Однако дисперсия выборочной совокупности не равна дисперсии генеральной совокупности, и следовательно, средние ошибки выборки, рассчитанные по формулам (форм. 5) и (форм. 6), будут приближенными. Но в теории вероятностей доказано, что генеральная дисперсия выражается через выборную следующим соотношением:
Этапы становления социальных технологий
Появление социальных технологий в виде «прототехнологий» – как технологий управления в пределах различных конкретных форм аграрных цивилизаций; это появление можно связать с появлением слоёв общества. Данный процесс был связан с возникнов ...
Гендерная модель «советского детства» на начальных этапах появления
советской власти
Изучение советского детства является перспективным в контексте гендерной методологии. Начало гендерного анализа государственных стратегий в области детства в 1920-30-е годы было положено современными российскими и западными учёными.
Одна ...
Региональные особенности самоидентификации современного студенчества. Основные направления социокультурной самоидентификации студенчества
в регионе
Для определения основных направлений социокультурной самоидентификации студенчества в Ставропольском крае была выбрана одна из мобильных в обществе социальных групп – студенты. Такой выбор продиктован, прежде всего, тем, что студенчество ...
